If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (e3y * x2 + e3y * y2) * dx + (e3y * x3 + e3y * 3xy2 + e3y * 2xy) * dy = 0 Multiply e3y * x2 (e3x2y + e3y * y2) * dx + (e3y * x3 + e3y * 3xy2 + e3y * 2xy) * dy = 0 Multiply e3y * y2 (e3x2y + e3y3) * dx + (e3y * x3 + e3y * 3xy2 + e3y * 2xy) * dy = 0 Reorder the terms for easier multiplication: dx(e3x2y + e3y3) + (e3y * x3 + e3y * 3xy2 + e3y * 2xy) * dy = 0 (e3x2y * dx + e3y3 * dx) + (e3y * x3 + e3y * 3xy2 + e3y * 2xy) * dy = 0 Reorder the terms: (de3xy3 + de3x3y) + (e3y * x3 + e3y * 3xy2 + e3y * 2xy) * dy = 0 (de3xy3 + de3x3y) + (e3y * x3 + e3y * 3xy2 + e3y * 2xy) * dy = 0 Multiply e3y * x3 de3xy3 + de3x3y + (e3x3y + e3y * 3xy2 + e3y * 2xy) * dy = 0 Reorder the terms for easier multiplication: de3xy3 + de3x3y + (e3x3y + 3e3y * xy2 + e3y * 2xy) * dy = 0 Multiply e3y * xy2 de3xy3 + de3x3y + (e3x3y + 3e3xy3 + e3y * 2xy) * dy = 0 Reorder the terms for easier multiplication: de3xy3 + de3x3y + (e3x3y + 3e3xy3 + 2e3y * xy) * dy = 0 Multiply e3y * xy de3xy3 + de3x3y + (e3x3y + 3e3xy3 + 2e3xy2) * dy = 0 Reorder the terms: de3xy3 + de3x3y + (2e3xy2 + 3e3xy3 + e3x3y) * dy = 0 Reorder the terms for easier multiplication: de3xy3 + de3x3y + dy(2e3xy2 + 3e3xy3 + e3x3y) = 0 de3xy3 + de3x3y + (2e3xy2 * dy + 3e3xy3 * dy + e3x3y * dy) = 0 de3xy3 + de3x3y + (2de3xy3 + 3de3xy4 + de3x3y2) = 0 Reorder the terms: de3xy3 + 2de3xy3 + 3de3xy4 + de3x3y + de3x3y2 = 0 Combine like terms: de3xy3 + 2de3xy3 = 3de3xy3 3de3xy3 + 3de3xy4 + de3x3y + de3x3y2 = 0 Solving 3de3xy3 + 3de3xy4 + de3x3y + de3x3y2 = 0 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Factor out the Greatest Common Factor (GCF), 'de3xy'. de3xy(3y2 + 3y3 + x2 + x2y) = 0Subproblem 1
Set the factor 'de3xy' equal to zero and attempt to solve: Simplifying de3xy = 0 Solving de3xy = 0 Move all terms containing d to the left, all other terms to the right. Simplifying de3xy = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Subproblem 2
Set the factor '(3y2 + 3y3 + x2 + x2y)' equal to zero and attempt to solve: Simplifying 3y2 + 3y3 + x2 + x2y = 0 Reorder the terms: x2 + x2y + 3y2 + 3y3 = 0 Solving x2 + x2y + 3y2 + 3y3 = 0 Move all terms containing d to the left, all other terms to the right. Add '-1x2' to each side of the equation. x2 + x2y + 3y2 + -1x2 + 3y3 = 0 + -1x2 Reorder the terms: x2 + -1x2 + x2y + 3y2 + 3y3 = 0 + -1x2 Combine like terms: x2 + -1x2 = 0 0 + x2y + 3y2 + 3y3 = 0 + -1x2 x2y + 3y2 + 3y3 = 0 + -1x2 Remove the zero: x2y + 3y2 + 3y3 = -1x2 Add '-1x2y' to each side of the equation. x2y + 3y2 + -1x2y + 3y3 = -1x2 + -1x2y Reorder the terms: x2y + -1x2y + 3y2 + 3y3 = -1x2 + -1x2y Combine like terms: x2y + -1x2y = 0 0 + 3y2 + 3y3 = -1x2 + -1x2y 3y2 + 3y3 = -1x2 + -1x2y Add '-3y2' to each side of the equation. 3y2 + -3y2 + 3y3 = -1x2 + -1x2y + -3y2 Combine like terms: 3y2 + -3y2 = 0 0 + 3y3 = -1x2 + -1x2y + -3y2 3y3 = -1x2 + -1x2y + -3y2 Add '-3y3' to each side of the equation. 3y3 + -3y3 = -1x2 + -1x2y + -3y2 + -3y3 Combine like terms: 3y3 + -3y3 = 0 0 = -1x2 + -1x2y + -3y2 + -3y3 Simplifying 0 = -1x2 + -1x2y + -3y2 + -3y3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| Y/3-9=-3 | | 7a-6b=1 | | 12-3x=4x-23 | | r-3=8-r | | 4(x-2)+7=-1(x+3)13 | | 5[-2(2x+4)+4(4x-4)]= | | 12x^2+576-56x=0 | | V/13=3/8 | | 4p-p=27 | | (x^2+y^2)dx+(x^3+3xy^2+2xy)dy=0 | | z^2+z+3=0 | | -4-3/-4*3 | | -6(2x-5)=-10x+10 | | 4v+12-8v= | | 10=x-(-5) | | 3/4(6-x)=-2 | | 2-x=ax-8b | | 3(4r-3)-4(r-3)= | | (3*2)-(5*5)+(8*4)= | | -67+p=-48 | | -58-b=20 | | 4x-9(6x+12)=16x+9 | | -6=9y-10 | | 4x-9x^2=-324 | | 6cos^2+11cos-10=0 | | 15x+35=95 | | cos*2*x=5-6*cos^2*x | | (-3x^2+24x-45)=0 | | 11/39-14/39 | | 7+2b=-3 | | 9x^2=-324 | | X^2-15=00 |